Unusual hydrogen bonding in water-filled carbon nanotubes.
نویسندگان
چکیده
We present the first experimental vibrational spectroscopy study providing direct evidence of a water phase inside single-walled carbon nanotubes that exhibits an unusual form of hydrogen-bonding due to confinement. Water adopts a stacked-ring structure inside nanotubes, forming intra- and inter-ring hydrogen bonds. The intra-ring hydrogen bonds are bulk-like while the inter-ring hydrogen bonds are relatively weak, having a distorted geometry that gives rise to a distinct OH stretching mode. The experimentally observed infrared mode at 3507 cm(-1) is assigned to vibrations of the inter-ring OH-groups based on detailed atomic-level modeling. The direct observation of unusual hydrogen bonding in nanotubes has potential implications for water in other highly confined systems, such as biological channels and nanoporous media.
منابع مشابه
Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes
Recent studies have shown the possibility of water transport across carbon nanotubes, even in the case of nanotubes with small diameter (0.822 nm). In this case, water shows subcontinuum transport following an ordered 1D structure stabilized by hydrogen bonds. In this work, we report MD simulations describing the effect of a perpendicular electric field in this single-file water transport in ca...
متن کاملEnergetic contribution to hydration shells in one-dimensional aqueous electrolyte solution by anomalous hydrogen bonds.
The hydration structure of NaCl aqueous solution was elucidated in carbon nanotubes (CNTs) on the basis of canonical ensemble Monte Carlo simulations. Hydration shells were preferentially formed even in narrow CNTs to gain stabilization energy, whereas hydrogen bonding between water molecules in such CNTs was sacrificed. Nanoscale-confined aqueous electrolyte solutions therefore prioritize hydr...
متن کاملWhy are carbon nanotubes fast transporters of water?
Extraordinarily fast transport of water in carbon nanotubes (CNTs) in recent experiments has been generally attributed to the smoothness of the CNT surface. Using molecular dynamics simulations we investigate water flow in (16,16) CNTs and show that the enhanced flow rates over Hagen-Poiseuille flow arise from a velocity "jump" in a depletion region at the water nanotube interface and that the ...
متن کاملWater conduction through carbon nanotubes
In molecular dynamics simulations we found that water can form hydrogen-bonded water chains in the interior of carbon nanotubes. Water penetration is sensitive to details of thermodynamic conditions and interaction potentials, resulting in sharp, first-order like transitions between filled and empty states. Under wetting conditions, water molecules are transported efficiently through nanotubes....
متن کاملAb initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
Ab initio molecular dynamics simulations were performed to investigate the effects of nanoscale confinement on the structural and dynamical properties of aqueous triflic acid (CF3SO3H). Single-walled carbon nanotubes (CNTs) with diameters ranging from ∼11 to 14 Å were used as confinement vessels, and the inner surface of the CNT were either left bare or fluorinated to probe the influence of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 37 شماره
صفحات -
تاریخ انتشار 2006